# 计算机操作系统底层
# 内容
- 硬件基础知识
- Java相关硬件知识
- 汇编语言的执行过程(时钟发生器 寄存器 程序计数器)
- 计算机启动过程
- 操作系统基本知识
- 进程线程纤程的基本概念
- 纤程的实现
- 内存管理
- 进程管理与线程管理(进程与线程在Linux中的实现)
- 中断与系统调用(软中断)
- 内核同步基础知识
- 关于硬盘 IO DMA
# 硬件基础知识
关于底层的细节:
适度打开
很多情况下保持黑箱即可,因为打开这个黑箱,你就会发现黑箱会变成黑洞,吞噬你所有的精力和时间,有可能使你偏离原来的方向,陷入到不必要的细节中无法自拔
CPU制作
一堆沙子+一堆铜+一堆胶水+特定金属添加+特殊工艺
沙子脱氧->石英->二氧化硅->提纯->硅锭->切割->晶圆->涂抹光刻胶->光刻->蚀刻->清除光刻胶->电镀->抛光->铜层->测试->切片->封装
晶体管工作原理
硅->加入特殊元素->P半导体 N半导体->PN节->二极管->场效应晶体管->逻辑开关
与门 或门 非门 或非门 (异或) -> 基础逻辑电路
加法器 累加器 锁存器...
实现手动计算(通电一次,运行一次位运算)
加入内存 实现自动运算(每次读取内存指令,(高电低电))
计算机工作原理
64位与32位系统的区别是CPU一次能最大能读64/32位数字
但是总线不是这样可能是128位,CPU再读一次就行了
计算机通电 -> CPU读取内存中程序(电信号输入)
->时钟发生器不断震荡通断电 ->推动CPU内部一步一步执行
(执行多少步取决于指令需要的时钟周期)
->计算完成->写回(电信号)->写给显卡输出(sout,或者图形)
主要是让计算机看懂计算: 01000010 + 0010010001
手工输入:纸带计算机
助记符:01000010 --->> mov sub....
高级语言 -> 编译器 -> 机器语言
# 汇编语言的执行过程
汇编的本质:机器语言的助记符,其实它就是机器语言
# 量子计算机
量子比特,同时表示1 0
# CPU的基本组成
PC -> Program Counter 程序计数器 (记录当前指令地址)
Registers -> 暂时存储CPU计算需要用到的数据
ALU -> Arithmetic & Logic Unit 运算单元
CU -> Control Unit 控制单元
MMU -> Memory Management Unit 内存管理单元
cache
# 缓存
缓存行:
缓存行越大,局部性空间效率越高,但读取时间慢
缓存行越小,局部性空间效率越低,但读取时间快
取一个折中值,目前多用:
64字节
package com.mashibing.juc.c_028_FalseSharing;
public class T03_CacheLinePadding {
public static volatile long[] arr = new long[2];
public static void main(String[] args) throws Exception {
Thread t1 = new Thread(()->{
for (long i = 0; i < 10000_0000L; i++) {
arr[0] = i;
}
});
Thread t2 = new Thread(()->{
for (long i = 0; i < 10000_0000L; i++) {
arr[1] = i;
}
});
final long start = System.nanoTime();
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println((System.nanoTime() - start)/100_0000);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package com.mashibing.juc.c_028_FalseSharing;
public class T04_CacheLinePadding {
public static volatile long[] arr = new long[16];
public static void main(String[] args) throws Exception {
Thread t1 = new Thread(()->{
for (long i = 0; i < 10000_0000L; i++) {
arr[0] = i;
}
});
Thread t2 = new Thread(()->{
for (long i = 0; i < 10000_0000L; i++) {
arr[8] = i;
}
});
final long start = System.nanoTime();
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println((System.nanoTime() - start)/100_0000);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
缓存行对齐:对于有些特别敏感的数字,会存在线程高竞争的访问,为了保证不发生伪共享,可以使用缓存航对齐的编程方式
JDK7中,很多采用long padding提高效率
JDK8,加入了@Contended注解(实验)需要加上:JVM -XX:-RestrictContended
# 乱序执行
https://preshing.com/20120515/memory-reordering-caught-in-the-act/
jvm/jmm/Disorder.java
# 禁止乱序
CPU层面:Intel -> 原语(mfence lfence sfence) 或者锁总线
JVM层级:8个hanppens-before原则 4个内存屏障 (LL LS SL SS)
as-if-serial : 不管硬件什么顺序,单线程执行的结果不变,看上去像是serial
# 合并写(不重要)
Write Combining Buffer
一般是4个字节
由于ALU速度太快,所以在写入L1的同时,写入一个WC Buffer,满了之后,再直接更新到L2
# NUMA
Non Uniform Memory Access
ZGC - NUMA aware
分配内存会优先分配该线程所在CPU的最近内存
# 启动过程(不重要)
通电 -> bios uefi 工作 -> 自检 -> 到硬盘固定位置加载bootloader -> 读取可配置信息 -> CMOS
# 内核分类
微内核 - 弹性部署 5G IoT
宏内核 - PC phone
外核 - 科研 实验中 为应用定制操作系统 (多租户 request-based GC JVM)
# 用户态与内核态
cpu分不同的指令级别
linux内核跑在ring 0级, 用户程序跑在ring 3,对于系统的关键访问,需要经过kernel的同意,保证系统健壮性
内核执行的操作 - > 200多个系统调用 sendfile read write pthread fork
JVM -> 站在OS老大的角度,就是个普通程序
# 进程 线程 纤程 中断
面试高频:进程和线程有什么区别?
答案:进程就是一个程序运行起来的状态,线程是一个进程中的不同的执行路径。专业:进程是OS分配资源的基本单位,线程是执行调度的基本单位。分配资源最重要的是:独立的内存空间,线程调度执行(线程共享进程的内存空间,没有自己独立的内存空间)
纤程:用户态的线程,线程中的线程,切换和调度不需要经过OS
优势:1:占有资源很少 OS : 线程1M Fiber:4K 2:切换比较简单 3:启动很多个10W+
目前2020 3 22支持内置纤程的语言:Kotlin Scala Go Python(lib)... Java? (open jdk : loom)
# Java中对于纤程的支持:没有内置,盼望内置
利用Quaser库(不成熟)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>mashibing.com</groupId>
<artifactId>HelloFiber</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<!-- https://mvnrepository.com/artifact/co.paralleluniverse/quasar-core -->
<dependency>
<groupId>co.paralleluniverse</groupId>
<artifactId>quasar-core</artifactId>
<version>0.8.0</version>
</dependency>
</dependencies>
</project>
import co.paralleluniverse.fibers.Fiber;
import co.paralleluniverse.fibers.SuspendExecution;
import co.paralleluniverse.strands.SuspendableRunnable;
public class HelloFiber {
public static void main(String[] args) throws Exception {
long start = System.currentTimeMillis();
Runnable r = new Runnable() {
@Override
public void run() {
calc();
}
};
int size = 10000;
Thread[] threads = new Thread[size];
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(r);
}
for (int i = 0; i < threads.length; i++) {
threads[i].start();
}
for (int i = 0; i < threads.length; i++) {
threads[i].join();
}
long end = System.currentTimeMillis();
System.out.println(end - start);
}
static void calc() {
int result = 0;
for (int m = 0; m < 10000; m++) {
for (int i = 0; i < 200; i++) result += i;
}
}
}
import co.paralleluniverse.fibers.Fiber;
import co.paralleluniverse.fibers.SuspendExecution;
import co.paralleluniverse.strands.SuspendableRunnable;
public class HelloFiber2 {
public static void main(String[] args) throws Exception {
long start = System.currentTimeMillis();
int size = 10000;
Fiber<Void>[] fibers = new Fiber[size];
for (int i = 0; i < fibers.length; i++) {
fibers[i] = new Fiber<Void>(new SuspendableRunnable() {
public void run() throws SuspendExecution, InterruptedException {
calc();
}
});
}
for (int i = 0; i < fibers.length; i++) {
fibers[i].start();
}
for (int i = 0; i < fibers.length; i++) {
fibers[i].join();
}
long end = System.currentTimeMillis();
System.out.println(end - start);
}
static void calc() {
int result = 0;
for (int m = 0; m < 10000; m++) {
for (int i = 0; i < 200; i++) result += i;
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
作业:目前是10000个Fiber -> 1个JVM线程,想办法提高效率,10000Fiber -> 10份 -> 10Threads
# 纤程的应用场景
纤程 vs 线程池:很短的计算任务,不需要和内核打交道,并发量高!
# 僵尸进程
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
int main() {
pid_t pid = fork();
if (0 == pid) {
printf("child id is %d\n", getpid());
printf("parent id is %d\n", getppid());
} else {
while(1) {}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 孤儿进程
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
int main() {
pid_t pid = fork();
if (0 == pid) {
printf("child ppid is %d\n", getppid());
sleep(10);
printf("parent ppid is %d\n", getppid());
} else {
printf("parent id is %d\n", getpid());
sleep(5);
exit(0);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 进程调度
2.6采用CFS调度策略:Completely Fair Scheduler
按优先级分配时间片的比例,记录每个进程的执行时间,如果有一个进程执行时间不到他应该分配的比例,优先执行
默认调度策略:
实时 (急诊) 优先级分高低 - FIFO (First In First Out),优先级一样 - RR(Round Robin) 普通: CFS
# 中断
硬件跟操作系统内核打交道的一种机制
软中断(80中断) == 系统调用
系统调用:int 0x80 或者 sysenter原语
通过ax寄存器填入调用号
参数通过bx cx dx si di传入内核
返回值通过ax返回
java读网络 – jvm read() – c库read() - >
内核空间 -> system_call() (系统调用处理程序)
-> sys_read()
# 从汇编角度理解软中断
# 搭建汇编环境
yum install nasm
;hello.asm
;write(int fd, const void *buffer, size_t nbytes)
;fd 文件描述符 file descriptor - linux下一切皆文件
section data
msg db "Hello", 0xA
len equ $ - msg
section .text
global _start
_start:
mov edx, len
mov ecx, msg
mov ebx, 1 ;文件描述符1 std_out
mov eax, 4 ;write函数系统调用号 4
int 0x80
mov ebx, 0
mov eax, 1 ;exit函数系统调用号
int 0x80
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
编译:nasm -f elf hello.asm -o hello.o
链接:ld -m elf_i386 -o hello hello.o
一个程序的执行过程,要么处于用户态,要么处于内核态
# 内存管理
# 内存管理的发展历程
DOS时代 - 同一时间只能有一个进程在运行(也有一些特殊算法可以支持多进程)
windows9x - 多个进程装入内存 1:内存不够用 2:互相打扰
为了解决这两个问题,诞生了现在的内存管理系统:虚拟地址 分页装入 软硬件结合寻址
分页(内存不够用),内存中分成固定大小的页框(4K),把程序(硬盘上)分成4K大小的块,用到哪一块,加载那一块,加载的过程中,如果内存已经满了,会把最不常用的一块放到swap分区, 把最新的一块加载进来,这个就是著名的LRU算法
- LRU算法 LeetCode146题,头条要求手撕,阿里去年也要求手撕
- Least Recently Used 最不常用
- 哈希表(保证 查找操作O(1)) + 链表 (保证 排序操作和新增操作 O(1)))
- 双向链表 (保证 左边指针 指向右边块)
虚拟内存(解决相互打扰问题)
- DOS Win31 ... 互相干掉
- 为了保证互不影响 - 让进程工作在虚拟空间,程序中用到的空间地址不再是直接的物理地址,而是虚拟的地址,这样,A进程永远不可能访问到B进程的空间
- 虚拟空间多大呢?寻址空间 - 64位系统 2 ^ 64,比物理空间大很多 ,单位是byte
- 站在虚拟的角度,进程是独享整个系统 + CPU
- 内存映射:偏移量 + 段的基地址 = 线性地址 (虚拟空间)
- 线性地址通过 OS + MMU(硬件 Memory Management Unit)
缺页中断(不是很重要):
- 需要用到页面内存中没有,产生缺页异常(中断),由内核处理并加载
# ZGC
算法叫做:Colored Pointer
GC信息记录在指针上,不是记录在头部, immediate memory use
42位指针 寻址空间4T JDK13 -> 16T 目前为止最大16T 2^44
# CPU如何区分一个立即数 和 一条指令
总线内部分为:数据总线 地址总线 控制总线
地址总线目前:48位
颜色指针本质上包含了地址映射的概念
# 内核同步机制
# 关于同步理论的一些基本概念
•临界区(critical area): 访问或操作共享数据的代码段 简单理解:synchronized大括号中部分(原子性)
•竞争条件(race conditions)两个线程同时拥有临界区的执行权
•数据不一致:data unconsistency 由竞争条件引起的数据破坏
•同步(synchronization)避免race conditions
•锁:完成同步的手段(门锁,门后是临界区,只允许一个线程存在) 上锁解锁必须具备原子性
•原子性(象原子一样不可分割的操作)
•有序性(禁止指令重排)
•可见性(一个线程内的修改,另一个线程可见)
互斥锁 排他锁 共享锁 分段锁
# 内核同步常用方法
1.原子操作 – 内核中类似于AtomicXXX,位于<linux/types.h>
2.自旋锁 – 内核中通过汇编支持的cas,位于<asm/spinlock.h>
3.读-写自旋 – 类似于ReadWriteLock,可同时读,只能一个写 读的时候是共享锁,写的时候是排他锁
4.信号量 – 类似于Semaphore(PV操作 down up操作 占有和释放) 重量级锁,线程会进入wait,适合长时间持有的锁情况
5.读-写信号量 – downread upread downwrite upwrite (多个写,可以分段写,比较少用)(分段锁)
6.互斥体(mutex) – 特殊的信号量(二值信号量)
7.完成变量 – 特殊的信号量(A发出信号给B,B等待在完成变量上) vfork() 在子进程结束时通过完成变量叫醒父进程 类似于(Latch)
8.BKL:大内核锁(早期,现在已经不用)
9.顺序锁(2.6): – 线程可以挂起的读写自旋锁 序列计数器(从0开始,写时增加(+1),写完释放(+1),读前发现单数, 说明有写线程,等待,读前读后序列一样,说明没有写线程打断)
10.禁止抢占 – preempt_disable()
11.内存屏障 – 见volatile
# 汇编实现引导程序
# 编写汇编码
; 文件名 boot.asm
org 7c00h ; BIOS读入MBR后,从0x7c00h处开始执行
; 下面部分和10h有关中断,10h中断用来显示字符
mov ax, cs
mov es, ax
mov ax, msg
mov bp, ax ; ES:BP表示显示字符串的地址
mov cx, msgLen ; CX存字符长度
mov ax, 1301h ; AH=13h表示向TTY显示字符,AL=01h表示显示方式(字符串是否包含显示属性,01h表示不包含)
mov bx, 000fh ; BH=00h表示页号,BL=0fh表示颜色
mov dl, 0 ; 列
int 10h
msg: db "hello world, welcome to OS!"
msgLen: equ $ - msg ; 字符串长度
times 510 - ($ - $$) db 0 ; 填充剩余部分
dw 0aa55h ; 魔数,必须有这两个字节BIOS才确认是MBR
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 编译
nasm boot.asm -o boot.bin
# 制作启动软盘
- dd if=/dev/zero of=floppy.img bs=1474560 count=1 生成空白软盘镜像
- dd if=boot.bin of=myos.img bs=512 count=1 制作包含主引导记录boot.bin的启动镜像文件
- dd if=floppy.img of=myos.img skip=1 seek=1 bs=512 count=2879 在 bin 生成的镜像文件后补上空白,成为合适大小的软盘镜像,一共2880个扇区,略过第一个
# 用软盘启动系统
- 将myos.img下载到windows
- VMWare创建空的虚拟机
- 文件 - 创建新的虚拟机 - 典型
- 稍后安装操作系统
- 其他
- 一路next 完成
- 虚拟机设置,去掉CD/DVD选项中“启动时连接”
- 网络,选择“仅主机模式”,勾选“启动时连接”(好像无所谓)
- 添加软盘驱动器 使用软盘映像 找到myos.img
- 启动虚拟机
# 为什么是0x7C00?
参考:https://www.glamenv-septzen.net/en/view/6